top of page

Publications

A full list of publications can be found on Google Scholar

PA_TOC.tif

Optical photothermal infrared imaging of fatty acid metabolism in the ER of living cells

[32] Castillo, H.B.; Davis, C.M. “Optical photothermal infrared imaging of fatty acid metabolism in the ER of living cells” bioRxiv. 

Biofilm.png

Conformation and sequence determinants in the lipid binding of an adhesive peptide derived from Vibrio cholerae biofilm

[31] Huang, X.; Prasad, R.; Saluja, S.; Yang, Y.; Yan, Q.; Shuster, S.O.; Olson, R.; Lin, C.; Davis, C.M.; Jiang, X.; Zhou, H.-X.; Yan, J. “Conformation and sequence determinants in the lipid binding of an adhesive peptide derived from Vibrio cholerae biofilm” bioRxiv. 

Patel_DNA.tif

Phase separation oppositely modulates G-quadruplex and i-motif DNA folding in the nuclei of living cells

[30] Patel, B.; Hoang, C.; Yoo, H.; Davis, C.M. “Phase separation oppositely modulates G-quadruplex and i-motif DNA folding in the nuclei of living cells” bioRxiv. 

barnase_edited_edited.png

Weak, specific chemical interactions dictate barnase stability in diverse cellular environments 

[29] Tahir, U.; Davis, C.M. “Weak, specific chemical interactions dictate barnase stability in diverse cellular environments,” Protein Sci. 2025 34 (5) e70128. 

AChem.tif

Optical photothermal infrared imaging using metabolic probes in biological systems 

[28] Shuster, S.O.; Curtis, A.E.; Davis, C.M. “Optical photothermal infrared imaging using metabolic probes in biological systems,” Anal. Chem. 2025, 97 (15): 8202-8212.

OHern.png

Identifying the minimal sets of distance restraints for FRET-assisted protein structural modeling 

[27] Liu, Z.; Grigas, A.T.; Sumner, J.; Knab, E.; Davis, C.M., O'Hern, C.S. “Identifying the minimal sets of distance restraints for FRET-assisted protein structural modeling,” Protein Sci. 2024, 33 (12) e5219. 

Burke.webp

Similarity metrics for subcellular analysis of FRET microscopy videos

[26] Burke, M.; Batista, V.*; Davis, C.M.* “Similarity metrics for subcellular analysis of FRET microscopy videos,” J. Phys. Chem. B. 2024, 128 (35) 8344-8354. 

Bartholomew.gif

Exfoliation of a metal–organic framework enabled by post-synthetic cleavage of a dipyridyl dianthracene ligand

[25] Logelin, M.E.; Schreiber, E.; Mercado, B.Q.; Burke, M.J.; Davis, C.M.; Bartholomew, A.K. “Exfoliation of a metal-organic framework enabled by post-synthetic cleavage of a dipyridyl dianthracene ligand,” Chem. Sci. 2024, 15 (37) 15198-15204. 

OA_TOC.tif

Oleic acid differentially affects lipid droplet storage of de novo synthesized lipids in hepatocytes and adipocytes

[24] Castillo, H.B. †; Shuster, S.O. †; Tarekegn, L.H.; Davis, C.M. “Oleic acid differentially affects lipid droplet storage of de novo synthesized lipids in hepatocytes and adipocytes,” Chem. Comm. 2024, 60: 3138-3141. 

PFKL.jpg

Site-specific crosslinking reveals phosphofructokinase-L inhibition drives self-assembly and attenuation of protein interactions

[23] Sivadas, A.†; McDonald, E.F.†; Shuster, S.O.; Davis, C.M.; Plate, L. “Site-specific crosslinking reveals phosphofructokinase-L inhibition drives self-assembly and attenuation of protein interactions,” Adv. Biol. Regul. 2023, 90: 100987. 

lambda.png

Chemical interactions modulate λ6-85 stability in cells

[22] Knab, E.; Davis, C.M. “Chemical interactions modulate λ6-85 stability in cells,” Protein Sci. 2023, 32 (7): e4698. 

JCBP.png

Spatiotemporal heterogeneity of de novo lipogenesis in fixed and living single cells

[21] Shuster, S.O.; Burke, M.J.; Davis, C.M. “Spatiotemporal heterogeneity of de novo lipogenesis in fixed and living single cells,” J. Phys. Chem. B, 2023, 127 (13): 2918-2926. 

RNA mimic.jpeg

An in vitro cytomimetic of in-cell RNA folding

[20] Yoo, H.; Davis, C.M. “An in vitro cytomimetic of in-cell RNA folding,” ChemBioChem. 2022, 23 (20): e202200406. 

SL1 RNA.jpeg

Spliceosomal SL1 RNA binding to U1-70k: the role of the extended RRM

[19] Gopan, G.†; Ghaemi, Z.†; Davis, C.M.; Gruebele, M. “Spliceosomal SL1 RNA binding to U1-70K: the role of the extended RRM,” Nucl. Acids Res. 2022, 50 (14): 8193-8206. 

jp1c00950_0008.jpeg

Cellular sticking can strongly reduce complex binding by speeding dissociation

[18] Davis, C.M.*; Gruebele, M.* “Cellular sticking can strongly reduce complex binding by speeding dissociation,” J. Phys. Chem. B 2021, 125 (15): 3815-3823.

Publication17_edited.jpg

Cytoskeletal drugs modulate off-target protein folding landscapes inside cells

[17] Davis, C.M.*; Gruebele, M.* “Cytoskeletal drugs modulate off-target protein folding landscapes inside cells,” Biochemistry 2020, 59 (28), 2650-2659.  

Figure3v2.png

An in vitro mimic of in-cell solvation for protein folding studies

[16] Davis, C.M.*; Deutsch, J.C.; Gruebele, M.* “An in vitro mimic of in-cell solvation for protein folding studies,” Protein Sci. 2020, 29 (4), 1046-1054.  

Paper15.png

Quantifying protein dynamics and stability in a living organism

[15] Feng, R.; Gruebele, M.*; Davis, C.M.*“Quantifying protein dynamics and stability in a living organism,” Nat. Commun. 2019, 10, 1179.

Publication14.png

Cell volume controls protein stability and compactness of the unfolded state

[14] Wang, Y.†; Sukenik, S.*†; Davis, C.M.; Gruebele, M.* “Cell volume controls protein stability and compactness of the unfolded state,” J. Phys. Chem. B 2018, 122 (49), 11762-11770.

Publication13.png

A quantitative connection of experimental and simulated folding landscapes by vibrational spectroscopy

[13] Davis, C.M.†; Polzi, L.Z.†; Gruebele, M.; Amadei, A.; Dyer, R.B.*; Daidone, I.* “A quantitative connection of experimental and simulated folding landscapes by vibrational spectroscopy,” Chem. Sci. 2018, 9, 9002-9011.

bomaf6.2018.19.issue-9.largecover.jpg

Soluble zwitterionic poly(sulfobetaine) destabilizes proteins

[12] Kisley, L.; Serrano, K.M.; Davis, C.M.; Guin, D.; Murphy, E.; Gruebele, M.*; Leckband, D.E.* “Soluble zwitterionic poly(sulfobetaine) destabilizes proteins,” Biomacromolecules 2018, 19 (9), 3894-3901. 

Publication11.png

Non-steric interactions predict the trend and steric interactions the offset of protein stability in cells

[11] Davis, C.M.; Gruebele, M. “Non-steric interactions predict the trend and steric interactions the offset of protein stability in cells,” ChemPhysChem 2018, 19 (18), 2290-2294.

Publication10.png

Labeling for quantitative comparison of imaging measurements in vitro and in cells

[10] Davis, C.M.*; Gruebele, M.* “Labeling for quantitative comparison of imaging measurements in vitro and in cells,” Biochemistry 2018, 57 (13), 1929-1938.

Publication9.png

Binding, folding, and insertion of a β-hairpin peptide at a lipid bilayer surface: influence of electrostatics and lipid tail packing

[9] Reid, K.; Davis, C.M.; Dyer, R.B.; Kindt, J.T. “Binding, folding, and insertion of a β-hairpin peptide at a lipid bilayer surface: influence of electrostatics and lipid tail packing,” Biochim. Biophys. Acta Biomembr. 2018, 1860 (3), 792-800.

Publication8.png

How does solvation in the cell affect protein folding and binding?

[8] Davis, C.M.; Gruebele, M.; Sukenik, S. “How does solvation in the cell affect protein folding and binding?” Curr. Opin. Struct. Biol. 2018, 48, 23-29.

Publication7.png

Parallel folding pathways of Fip35 WW domain explained by infrared spectra and their computer simulation

[7] Polzi, L.Z.; Davis, C.M.; Gruebele, M.; Dyer, R.B.; Amadei, A.; Daidone, I. “Parallel folding pathways of Fip35 WW domain explained by infrared spectra and their computer simulation,” FEBS Lett. 2017, 591 (20), 3265-3275.

Paper6.jpg

Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics

[6] Davis, C.M.; Reddish, M.J.; Dyer, R.B. “Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics,” Spectrochim. Acta A 2017, 178, 185-191.

Paper5.gif

The role of electrostatic interactions in folding of β-proteins

[5] Davis, C.M.; Dyer, R.B. “The role of electrostatic interactions in folding of β-proteins,” J. Am. Chem. Soc. 2016, 138 (4), 1456-1464.

Paper4.gif

Fast helix formation in the B domain of protein A revealed by site-specific infrared probes

[4] Davis, C.M.; Cooper, A.K.; Dyer, R.B. “Fast helix formation in the B domain of protein A revealed by site-specific infrared probes,” Biochemistry 2015, 54 (9), 1758-1766.

Paper3.gif

WW Domain folding complexity revealed by infrared spectroscopy

[3] Davis, C.M.; Dyer, R. B. “WW Domain folding complexity revealed by infrared spectroscopy,” Biochemistry 2014, 53 (34), 5476-5484.

Paper2.gif

Dynamics of an ultrafast folding subdomain in the context of a larger protein fold

[2] Davis, C.M.; Dyer, R. B. “Dynamics of an ultrafast folding subdomain in the context of a larger protein fold,” J. Am. Chem. Soc. 2013, 135 (51), 19260-19267.

Paper1.gif

Raising the speed limit for β-hairpin formation

[1] Davis, C.M.; Xiao, S.; Raleigh, D.P.*; Dyer, R. B.* “Raising the speed limit for β-hairpin formation,” J. Am. Chem. Soc. 2012, 134 (35), 14476-14482.

yale-blue_2x.png
  • Twitter Clean Grey

© 2019 Davis Lab

Davis Lab, Yale University

Department of Chemistry

255 Prospect St, KCL 108

New Haven, CT 06511

bottom of page