top of page

Publications

A full list of publications can be found on Google Scholar

Burke.webp

Similarity metrics for subcellular analysis of FRET microscopy videos

[26] Burke, M.; Batista, V.*; Davis, C.M.* “Similarity metrics for subcellular analysis of FRET microscopy videos,” J. Phys. Chem. B. in press. DOI: 10.1021/acs.jpcb.4c02859

Bartholomew.gif

Exfoliation of a metal–organic framework enabled by post-synthetic cleavage of a dipyridyl dianthracene ligand

DOI: 10.1039/D4SC03524K

PMID: 

[25] Logelin, M.E.; Schreiber, E.; Mercado, B.Q.; Burke, M.J.; Davis, C.M.; Bartholomew, A.K. “Exfoliation of a metal-organic framework enabled by post-synthetic cleavage of a dipyridyl dianthracene ligand,” Chem. Sci. in press. DOI: 10.1039/D4SC03524K

OA_TOC.tif

Oleic acid differentially affects lipid droplet storage of de novo synthesized lipids in hepatocytes and adipocytes

[24] Castillo, H.B. †; Shuster, S.O. †; Tarekegn, L.H.; Davis, C.M. “Oleic acid differentially affects lipid droplet storage of de novo synthesized lipids in hepatocytes and adipocytes,” Chem. Comm. 2024, 60: 3138-3141. DOI: 10.1039/D3CC04829B 

PFKL.jpg

Site-specific crosslinking reveals phosphofructokinase-L inhibition drives self-assembly and attenuation of protein interactions

[23] Sivadas, A.†; McDonald, E.F.†; Shuster, S.O.; Davis, C.M.; Plate, L. “Site-specific crosslinking reveals phosphofructokinase-L inhibition drives self-assembly and attenuation of protein interactions,” Adv. Biol. Regul. 2023, 90: 100987. DOI: 10.1016/j.jbior.2023.100987

lambda.png

Chemical interactions modulate λ6-85 stability in cells

[22] Knab, E.; Davis, C.M. “Chemical interactions modulate λ6-85 stability in cells,” Protein Sci. 2023, 32 (7): e4698.DOI: 10.1002/pro.4698 

JCBP.png

Spatiotemporal heterogeneity of de novo lipogenesis in fixed and living single cells

[21] Shuster, S.O.; Burke, M.J.; Davis, C.M. “Spatiotemporal heterogeneity of de novo lipogenesis in fixed and living single cells,” J. Phys. Chem. B, 2023, 127 (13): 2918-2926. DOI: 10.1021/acs.jpcb.2c08812 

RNA mimic.jpeg

An in vitro cytomimetic of in-cell RNA folding

[20] Yoo, H.; Davis, C.M. “An in vitro cytomimetic of in-cell RNA folding,” ChemBioChem. 2022, 23 (20): e202200406. DOI: 10.1002/cbic.202200406

SL1 RNA.jpeg

Spliceosomal SL1 RNA binding to U1-70k: the role of the extended RRM

[19] Gopan, G.†; Ghaemi, Z.†; Davis, C.M.; Gruebele, M. “Spliceosomal SL1 RNA binding to U1-70K: the role of the extended RRM,” Nucl. Acids Res. 2022, 50 (14): 8193-8206. DOI: 10.1093/nar/gkac599

jp1c00950_0008.jpeg

Cellular sticking can strongly reduce complex binding by speeding dissociation

[18] Davis, C.M.*; Gruebele, M.* “Cellular sticking can strongly reduce complex binding by speeding dissociation,” J. Phys. Chem. B 2021, accepted. DOI: 10.1021/acs.jpcb.1c00950 

Publication17_edited.jpg

Cytoskeletal drugs modulate off-target protein folding landscapes inside cells

[17] Davis, C.M.*; Gruebele, M.* “Cytoskeletal drugs modulate off-target protein folding landscapes inside cells,” Biochemistry 2020, 59 (28), 2650-2659. DOI: 10.1021/acs.biochem.0c00299 

Figure3v2.png

An in vitro mimic of in-cell solvation for protein folding studies

[16] Davis, C.M.*; Deutsch, J.C.; Gruebele, M.* “An in vitro mimic of in-cell solvation for protein folding studies,” Protein Sci. 2020, 29 (4), 1046-1054.  

Paper15.png

Quantifying protein dynamics and stability in a living organism

[15] Feng, R.; Gruebele, M.*; Davis, C.M.*“Quantifying protein dynamics and stability in a living organism,” Nat. Commun. 2019, 10, 1179.

Publication14.png

Cell volume controls protein stability and compactness of the unfolded state

[14] Wang, Y.†; Sukenik, S.*†; Davis, C.M.; Gruebele, M.* “Cell volume controls protein stability and compactness of the unfolded state,” J. Phys. Chem. B 2018, 122 (49), 11762-11770.

Publication13.png

A quantitative connection of experimental and simulated folding landscapes by vibrational spectroscopy

[13] Davis, C.M.†; Polzi, L.Z.†; Gruebele, M.; Amadei, A.; Dyer, R.B.*; Daidone, I.* “A quantitative connection of experimental and simulated folding landscapes by vibrational spectroscopy,” Chem. Sci. 2018, 9, 9002-9011.

bomaf6.2018.19.issue-9.largecover.jpg

Soluble zwitterionic poly(sulfobetaine) destabilizes proteins

[12] Kisley, L.; Serrano, K.M.; Davis, C.M.; Guin, D.; Murphy, E.; Gruebele, M.*; Leckband, D.E.* “Soluble zwitterionic poly(sulfobetaine) destabilizes proteins,” Biomacromolecules 2018, 19 (9), 3894-3901. 

Publication11.png

Non-steric interactions predict the trend and steric interactions the offset of protein stability in cells

[11] Davis, C.M.; Gruebele, M. “Non-steric interactions predict the trend and steric interactions the offset of protein stability in cells,” ChemPhysChem 2018, 19 (18), 2290-2294.

Publication10.png

Labeling for quantitative comparison of imaging measurements in vitro and in cells

[10] Davis, C.M.*; Gruebele, M.* “Labeling for quantitative comparison of imaging measurements in vitro and in cells,” Biochemistry 2018, 57 (13), 1929-1938.

Publication9.png

Binding, folding, and insertion of a β-hairpin peptide at a lipid bilayer surface: influence of electrostatics and lipid tail packing

[9] Reid, K.; Davis, C.M.; Dyer, R.B.; Kindt, J.T. “Binding, folding, and insertion of a β-hairpin peptide at a lipid bilayer surface: influence of electrostatics and lipid tail packing,” Biochim. Biophys. Acta Biomembr. 2018, 1860 (3), 792-800.

Publication8.png

How does solvation in the cell affect protein folding and binding?

[8] Davis, C.M.; Gruebele, M.; Sukenik, S. “How does solvation in the cell affect protein folding and binding?” Curr. Opin. Struct. Biol. 2018, 48, 23-29.

Publication7.png

Parallel folding pathways of Fip35 WW domain explained by infrared spectra and their computer simulation

[7] Polzi, L.Z.; Davis, C.M.; Gruebele, M.; Dyer, R.B.; Amadei, A.; Daidone, I. “Parallel folding pathways of Fip35 WW domain explained by infrared spectra and their computer simulation,” FEBS Lett. 2017, 591 (20), 3265-3275.

Paper6.jpg

Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics

[6] Davis, C.M.; Reddish, M.J.; Dyer, R.B. “Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics,” Spectrochim. Acta A 2017, 178, 185-191.

Paper5.gif

The role of electrostatic interactions in folding of β-proteins

[5] Davis, C.M.; Dyer, R.B. “The role of electrostatic interactions in folding of β-proteins,” J. Am. Chem. Soc. 2016, 138 (4), 1456-1464.

Paper4.gif

Fast helix formation in the B domain of protein A revealed by site-specific infrared probes

[4] Davis, C.M.; Cooper, A.K.; Dyer, R.B. “Fast helix formation in the B domain of protein A revealed by site-specific infrared probes,” Biochemistry 2015, 54 (9), 1758-1766.

Paper3.gif

WW Domain folding complexity revealed by infrared spectroscopy

[3] Davis, C.M.; Dyer, R. B. “WW Domain folding complexity revealed by infrared spectroscopy,” Biochemistry 2014, 53 (34), 5476-5484.

Paper2.gif

Dynamics of an ultrafast folding subdomain in the context of a larger protein fold

[2] Davis, C.M.; Dyer, R. B. “Dynamics of an ultrafast folding subdomain in the context of a larger protein fold,” J. Am. Chem. Soc. 2013, 135 (51), 19260-19267.

Paper1.gif

Raising the speed limit for β-hairpin formation

[1] Davis, C.M.; Xiao, S.; Raleigh, D.P.*; Dyer, R. B.* “Raising the speed limit for β-hairpin formation,” J. Am. Chem. Soc. 2012, 134 (35), 14476-14482.

bottom of page